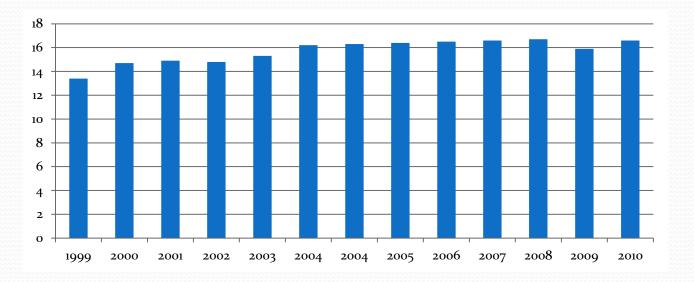
9th International Scientific Conference SUSTAINABLE GROWTH IN SMALL OPEN ECONOMIES 26th October, 2017, Belgrade, Serbia

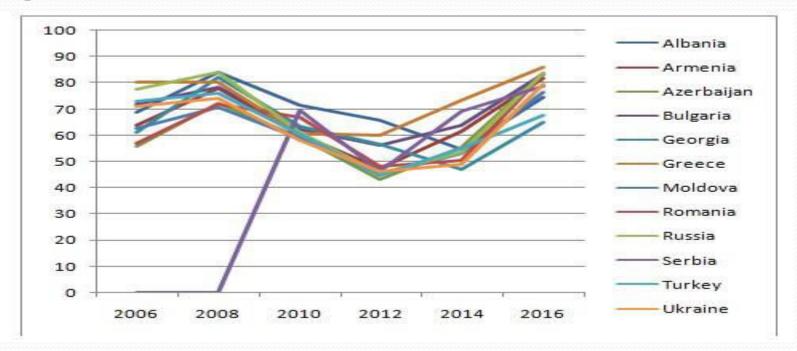
POSSIBILITIES FOR IMPROVING ECO -EFFICIENCY AND GROSS REBOUND EFFECT: A CASE STUDY IN BSEC MEMBER STATES

Authors: PhD Snežana Radukić MSc Dušan Perović

1. Theoretical background of problem


- Environmental issues
- The importance of the natural resources for economies
- Jevons paradox
- "Decoupling" effect
- Gross rebound effect

- Ehrlich and Holdren equation
- I=PAT
- I Environmental impact; P Population; A Affluence; T Technology
- Critics of the equation
- Practical implementation


- Black Sea Economic Cooperation
- Founded in 1992
- "Bosphorus Statement"
- Work of the BSEC

Graphic 1: Intra - regional trade in BSEC region for 1999 – 2010 (%)

- Environmental aspects of the BSEC
- Situation in BSEC member states

Graphic 2: EPI values for all BSEC member states

3. Testing the Ehlich and Holdren equation on BSEC member states

- Time period and subject of the analysis
- I energy use; P population growth rate; A GDP per capita (ppp) growth rate; T – electricity consumption per capita
- *H1:* Eco efficiency has a significant impact on the environment of the BSEC member states.
- Yit = α + Xit β + Ci + Ui

Table 1 – Panel data analayis

Fixed-effects (within) regression	Number of obs =	• 252
Group variable: State1	Number of groups =	- 12
R-sq: within = 0.4204	Obs per group: min =	= 21
between = 0.3726	avg =	= 21.0
overal1 = 0.2965	max =	= 21
	F(4,236) =	= 4.47
corr(u_i, Xb) = 0.2603	Prob > F =	= 0.0000

Ecofoot	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Eccefficie^y	. 6941426	. 0856921	1.68	0.000	0246766	.8759617
Popgrowth	. 0337794	.0514235	0.66	0.512	0675283	.1350871
Gdpgrowth	. 0545838	.0270699	2.02	0.045	.0012542	.1079133
Fincrisis	. 1585954	.1381307	3.53	0.000	.0194687	.7597222
_cons	. 4573717	.1907636	1.75	0.035	05635	.9710934
sigma_u	.5090073	2				
sigma_e	.0794987	9				
rho	.9286408	2 (fract	ion of	variance	due to u_i)	

F test that all u_i=0: F(11, 236) = 190.94

Prob > F = 0.0000

4. Identifying eco – efficiency key factors

- The importance of eco efficiency
- Level of eco efficiency in BSEC member states
- Analysis assumptions
- Gasoline prices,CO2 emissions per capita, Coal production growth rate, Use for renewable resources during the production of electricity
- *H2: Gasoline prices and CO2 emissions per capita have statistically significant impact on the eco efficiency.*
- *H3: Renewable resource use has positive and statistically significant impact on the eco efficiency*

Table 2 – Eco – efficiency regression analysis

	Source	SS	df	MS	Number of obs =	252
))) <u> </u>					F(5, 246) =	305.09
	Model	463.331975	5	92.6663951	Prob > F =	0.0000
	Residual	74.7179962	246	.303731692	R-squared =	0.8611
ğ Sa l		15 0.6500.6500.000	1000000	2	Adj R-squared =	0.8583
	Total	538.049971	251	2.14362538	Root MSE =	.55112

Eccefficiewy	coefficiery Coef.		t	P> t	[99.5% Conf.	Interval]	
Gasolinepr~e	.1977929	.1023703	7.79	0.000	.0978212	1.087765	
Co2emiss	4246948	.011158	-8.06	0.000	6930888	. 2863007	
Coalprod	.0031536	.0080713	0.39	0.696	0197091	.0260163	
Renewables	.5150433	.0200337	2.57	0.011	0052037	.7082902	
Fincrisis	.0942407	.1197638	0.79	0.432	2449996	.433481	
_cons	.1138056	.1182351	0.96	0.002	2211044	.4487156	

- Environmental issue is a very sensitive issue
- All hypothesis are accepted
- Ehrlich and Holdren equation is not suitable for BSEC member states
- Solutions and recommendations